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Abstract
Tabled execution is a generalization of memoization developed by
the logic programming community. It not only saves results from
tabled predicates, but also stores the set of currently active calls
to them; tabled execution can thus provide meaningful seman-
tics for programs that seemingly contain infinite recursions with
the same arguments. In logic programming, tabled execution is
used for many purposes, both for improving the efficiency of pro-
grams, and making tasks simpler and more direct to express than
with normal logic programs. However, tabled execution is only
infrequently applied in mainstream functional languages such as
Scheme. We demonstrate an elegant implementation of tabled ex-
ecution in Scheme, using a mix of continuation-passing style and
mutable data. We also show the use of tabled execution in Scheme
for a problem in formal language and automata theory, demonstrat-
ing that tabled execution can be a valuable tool for Scheme users.

1. Introduction
Tabled execution is a technique introduced in the logic program-
ming community for memoizing the results of predicates, as well
as allowing them to be suspended and resumed to prevent infinite
recursion (Warren 1992). One advantage of adding tabled execu-
tion to a Prolog system is that Prolog plus tabling is a decision
procedure for Datalog (Prolog without function symbols), while
normal Prolog evaluation causes some Datalog programs to fail
to terminate. Other names for tabled execution and similar con-
structs include OLDT resolution (Tamaki and Sato 1986), SLG
resolution (Chen and Warren 1996), and extension tables (Fan and
Dietrich 1992). Tabled execution has been used for model check-
ing (Ramakrishna et al. 1997), program analysis (Dawson et al.
1996; Saha and Ramakrishnan 2005), parsing (Warren 1993, 1999),
deductive databases (Fan and Dietrich 1992), single-source and all-
pairs shortest path algorithms on graphs (Dietrich 1992), and many
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other problems. The draft book by Warren (1999) provides a good
introduction to tabled execution in Prolog, its implementation, and
some of its uses. Because of its many uses, it would be beneficial to
have a general framework for tabled execution in other languages
such as Scheme. The closest available is in (Johnson 1995), which
explains how to use code expressing what is effectively tabled exe-
cution in Scheme for parsing context-free languages.

Memoization is a well-known technique in many programming
languages, and tabled execution, including reduction operations, is
well-known in logic programming. Some applications in functional
programming have used techniques similar to tabled execution; see
Section 6 for more information. A previous paper (Johnson 1995)
explains tabled execution in Scheme in the context of language
parsing; he also gives a progression from normal memoization to
tabled execution using functions explicitly in CPS form. We use
roughly the same model and sequence, with a somewhat different
presentation; we also add the ability to combine the results of
tabled functions, which does not appear in Johnson’s paper. A more
complete comparison of our work to his is given in Section 6. The
example of paths within graphs is a simplification of a previous
shortest path example using tabled execution (Dietrich 1992).

Tabled execution is an interesting use of Scheme because
it mixes the use of continuation-passing style (CPS)—and thus
higher-order functions—with impure operations. CPS is used to
allow a function to pass any number (including none at all) of re-
sults to its continuation by calling it multiple times, and allows a
function to be resumed in the middle when a new result arrives
from a recursive call. Impure operations are used to keep the hash
tables of memoization results and continuations. Also, the ability
for a Scheme function to transform one function into another (first-
class functions) is used to allow the wrapping of a function, and
dynamic typing is used to allow a hash table element to store a
value optionally.

Note that this paper addresses tabled execution of Scheme func-
tions, and thus only uses functions that accept fully ground argu-
ments and return fully ground results. Explicit continuation-passing
style is used for returning results to allow a single invocation of a
function to return multiple times (by calling its continuation re-
peatedly), but results cannot be wildcards as they can in a logic
programming language. This model better matches the applications
of tabled execution in the Scheme context, and removes the com-
plexities of keeping tables with partially-unbound arguments; our
implementation is also limited to a single scheduling strategy. Our
system has not been tested with sophisticated uses of Scheme con-
tinuations in tabled functions, and likely will not work when they
are used. The XSB Prolog manual presents more information on
these design tradeoffs (Swift et al. 2007, §5.2).

We first review the basic idea of memoization, and show a sim-
ple memoization wrapper in Scheme (Section 2). We then change



that wrapper to work on functions in continuation-passing style,
including those that call their continuations multiple times (Sec-
tion 3). We then discuss the problem of infinite recursions in
multiple-return functions, and how tabled execution provides an
elegant solution to that problem (Section 4). We then generalize
our implementation of tabling to allow the results from a single
function call to be combined in a user-defined way, rather than
storing and returning all of them (Section 5). We then compare
our approach to similar approaches used for related problems in
Scheme, and discuss some previous work on tabled execution in
Scheme (Section 6). A larger example, based on formal language
and automata theory, is then presented (Section 7). We finish with
a discussion of programming language issues in relation to memo-
ization and tabling (Section 8) and then conclude (Section 9).

2. Memoization
Memoization is a standard technique for increasing the efficiency
of computations (Michie 1968). A memoized function, instead of
computing its result from scratch for every invocation, reuses its
previous outputs when applied to the same arguments. A function
can only be memoized if it is pure—it must always return the same
output given the same inputs. A function that has been memoized
keeps a cache of its previous arguments and results. If a new set
of arguments matches a cached set, the cached results are used.
Otherwise, the function is computed on the new set of arguments,
and the result of that computation is inserted into the cache and then
returned. An example of memoization is the following Fibonacci
function implementation, which would require exponential time
without memoization but requires only linear time with it:1

(define fib
(let ((memo-table (make-hash-table)))
(λ (n)
(let ((memoized-val

(hash-table-get memo-table n #f)))
(if (eq? memoized-val #f)
(let ((result

(if (<= n 1)
1
(+ (fib (- n 1)) (fib (- n 2))))))

(hash-table-put! memo-table n result)
result)
memoized-val)))))

Rather than converting a function to be memoized by hand,
however, we can define a wrapper, as shown in Figure 1. Many
others have devised such wrappers and automatic memoization
translators in the past; we only present versions here to demon-
strate them and provide a progression to the later demonstration of
tabled execution. The memoize function’s argument must be one-
argument function.2

With this wrapper, fib can be written as follows (note that
recursive calls must go through the memoization code to achieve
linear execution time):

(define fib
(memoize
(λ (n)
(if (<= n 1)
1 (+ (fib (- n 1)) (fib (- n 2)))))))

1 All Scheme code in this paper is in the PLT Scheme dialect.
2 All memoization and tabled execution wrappers in this paper assume
single-argument, single-result functions and may require that the func-
tion not return #f to allow its use as a sentinel value. The function
parameters must be reliably comparable with eq? for brevity; calls to
make-hash-table can be changed to allow equal? to be used instead.

(define memoize
(λ (f)
(let ((memo (make-hash-table)))
(λ (arg)
(let ((memo-value

(hash-table-get memo arg #f)))
(if (eq? memo-value #f)
(let ((result (f arg)))
(hash-table-put! memo arg result)
result)
memo-value))))))

Figure 1. Function memoization wrapper.

This new version of the code is much simpler and easier to
understand, and requires only minimal modifications to the non-
memoized version of fib.

3. CPS memoization
Given a simple memoization implementation, we can change it to
operate on functions in continuation-passing style (CPS) (Steele
1978). The same basic components are used, except that an explicit
continuation is used instead of let and normal function returns.
CPS allows functions that produce a sequence of values for a single
invocation by calling their continuations multiple times, and so we
save all arguments to continuation calls. The new values are kept
as a set (using a nested hash table), so that the multiple returns of
the same value from the function are ignored. The memoization
wrapper for this is:

(define cps-memoize-multi
(λ (f)
(let ((memo (make-hash-table)))
(λ (k arg)
(let ((memo-values

(hash-table-get memo arg #f)))
(if (eq? memo-values #f)
(let ((output-values (make-hash-table)))
(f (λ (result)

(hash-table-put! output-values
result #t))

arg)
(hash-table-put! memo arg output-values)
(hash-table-for-each output-values

(λ (v _) (k v))))
(hash-table-for-each memo-values

(λ (v _) (k v)))))))))

This memoization wrapper can be used to compute all vertices
in a directed acyclic graph (DAG) reachable from a given vertex:3

(define dag-reachable-vertices
(cps-memoize-multi
(λ (k v)
(k v)
(for-each
(λ (tgt) (dag-reachable-vertices k tgt))
(out-neighbors v)))))

This algorithm can then be called as:

(define out-neighbors
(λ (v) (if (= v 9) ’() (list (add1 v)))))

3 The out-neighbors function is assumed to be global in order to avoid
an extra letrec in the function definition.



(define display-space
(λ (v) (display v) (display " ")))
(dag-reachable-vertices display-space 0)

=⇒ 1 3 9 5 7 8 6 4 2 0

4. Basic tabled execution
This implementation still has a problem: graphs with cycles cannot
be used. The reason is that the dag-reachable-vertices func-
tion is defined recursively, and the recursion is only on the vertices
of the graph. Thus, a vertex that is in a cycle will lead to an infi-
nite recursion. Standard solutions to this problem involve passing
around (or keeping in a mutable variable) state that indicates which
vertices have previously been visited in the graph in order to avoid
visiting them again. It would be better, however, to keep the simple
interface of only having a single non-continuation argument to the
reachable vertex functions.

The logic programming community has a solution to this prob-
lem, requiring only minimal changes to the cps-memoize-multi
function. The technique is referred to as tabled execution (Warren
1992). It generalizes memoization by allowing the function to call
itself recursively, even with the same arguments as in the current
call. The function can even use results from such “infinite” recur-
sions to produce its other results. In Scheme, some of the complex-
ities of tabling in logic programming are unnecessary, as arguments
to Scheme functions, and their results, are fully defined (ground).
Using an implementation of this simplified form of tabled execu-
tion, a full graph reachability function can be defined exactly like
the memoized definition for acyclic graphs, by only replacing the
memoization wrapper:

(define graph-reachable-vertices
(cps-table
(λ (k v)
(k v)
(for-each
(λ (tgt) (graph-reachable-vertices k tgt))
(out-neighbors v)))))

The cps-table function is slightly trickier than the standard
memoizer, however. First of all, it relies on CPS form for the
functions; our functions already have that form. It also keeps a
table of all of the continuations passed into it, in order to call
them on any new answers produced by the function. The previous
memoizer had no need to store the input continuations, because the
function would never produce any new answers once it terminated;
with this version, the function might initially reach an infinite
recursion that is broken by the tabled execution implementation. If
the function later produced an answer (using a different execution
path), that answer would be inserted into the location of the infinite
recursion. The function could then continue from that point to
possibly produce more answers. The code is shown in Figure 2.

The cps-table function keeps two state values for each in-
put argument value: the set memo (implemented using a hash ta-
ble of hash tables) of answers previously returned by f, and the
list k-list of continuations previously passed to the tabled ver-
sion of f. The goal of a function (cps-table f) produced by
table-thunk applied to f is to, when called with a continuation
k, pass all answers produced by f to k. Thus, we want to generate
the Cartesian product of the set of results from f with the set of
continuations ever given to (cps-table f), which can be viewed
as a rectangle. However, both of these sets are dynamic: calls to
(cps-table f) can occur at any time, including in the body of f
(adding more continuations to k-list); and f can return answers
at any time (adding more members to memo). These operations can

1(define cps-table
2 (λ (f)
3 (let ((memo (make-hash-table))
4 (k-list (make-hash-table)))
5 (λ (k arg)
6 (hash-table-put!
7 k-list
8 arg
9 (cons k (hash-table-get k-list arg ’())))

10 (if (eq? (hash-table-get memo arg #f) #f)
11 (let ((memo-table (make-hash-table)))
12 (hash-table-put! memo arg memo-table)
13 (f (λ (result)
14 (if (eq? (hash-table-get memo-table
15 result #f)
16 #f)
17 (begin
18 (hash-table-put! memo-table
19 result #t)
20 (for-each
21 (λ (saved-k) (saved-k result))
22 (hash-table-get k-list arg ’())))))
23 arg))
24 (hash-table-for-each
25 (hash-table-get memo arg)
26 (λ (v _) (k v))))))))

Figure 2. The simple tabled execution wrapper.

occur in any order, and each new element of either set is processed
using all elements so far of the other set, increasing the size of one
dimension of the rectangle; duplicate results from f are skipped by
the check in lines 14–16. Lines 20–22 call all continuations for a
new result from f, and lines 23–25 call all new continuations given
to (table-thunk f) with all results so far. Lines 6–9 and 18–19
update the total sets of continuations and results, respectively. The
strategy for processing the elements of the rectangle can be varied.
The other necessary behavior of the code is to only start f once, no
matter how many times (table-thunk f) is called; this check is
done on line 10 using the value #f in memo to indicate that f has
not yet been started.

5. Tabled execution with reduction operators
Instead of computing the reachability, suppose that the goal is to
compute single-source shortest paths in a weighted graph, as is
done with tabled execution in (Dietrich 1992). To get the paths, the
best path length associated with each reachable vertex needs to be
stored, not all of them. The memo table for a function and a given
argument is now a map rather than a set; we assume for simplicity
that #f is not a legal length value. The code is changed to both
handle two-argument continuations and to only keep the shortest
length value for each output vertex. Also, note that function outputs
that are not new length minima are completely ignored; they are
not passed to the output continuations. This modified version of the
code is in Figure 3.

This code only works correctly as long as the uses of this
code are monotonic in the length value; only new minimal lengths
are passed to the continuations, and multiple lengths (not just the
final minimum for each vertex) are given to them. Shortest path
computation works correctly with these issues, but other algorithms
might need to be modified to support being called with non-final
values.



(define cps-table-min
(λ (f)
(let ((memo (make-hash-table))

(k-list (make-hash-table)))
(λ (k arg)
(hash-table-put!
k-list
arg
(cons k (hash-table-get k-list arg ’())))

(if (eq? (hash-table-get memo arg #f) #f)
(let ((memo-table (make-hash-table)))
(hash-table-put! memo arg memo-table)
(f (λ (result len)

(let ((old-len
(hash-table-get memo-table

result #f)))
(if (or (eq? old-len #f)

(< len old-len))
(begin
(hash-table-put! memo-table

result len)
(for-each
(λ (saved-k) (saved-k result len))
(hash-table-get k-list arg ’()))))))

arg))
(hash-table-for-each
(hash-table-get memo arg)
k))))))

Figure 3. A tabled execution wrapper for functions that return
pairs 〈result , length〉 and where only the minimum length for each
result is kept.

There is a further improvement that could be made to this
code: generalizing the min operation to an arbitrary user-defined
combination function. The previous code sample used an explicit <
operation combined with a conditional update of the hash value
for that operation, but a more general function will need to be
given both the old and proposed new results of the function for
a given argument set. Also, rather than conditionally calling the
continuations based on the result of the < operation, an explicit
check for the equality of the old and new “length” values for
each result must be done. The combine function is required to
be idempotent and have #f as an identity element (which may be
provided in a wrapper if #f is not ordinarily in the domain of the
function). This generalization leads to the code in Figure 4.

This version of the code still requires the values produced by f
to be 〈value, length〉 pairs, where length might be some length-
like object that is combined using the combine function. Functions
that only return single values rather than pairs can be changed to
functions that, say, return #f and their actual output. This approach
is inefficient, but the code could be partially evaluated for that spe-
cial case. The code also does not allow changes in the calling se-
quence for k and elements in k-list. Thus, this function could be
generalized further to allow a function to be used to call continua-
tions. This new feature would allow continuations to be called with
multiple arguments, or to not be functions at all. The only change
that would be required to the code is to add a call-k parameter,
and to use it whenever a continuation is invoked rather than call-
ing it directly. That version is a straightforward modification of the
code above and so is not shown.

One difference between the code shown in this section and the
programming style shown in (Warren 1999) is that our implementa-
tion marks particular functions as being tabled with reduction oper-

(define cps-table-combine
(λ (f combine)
(let ((memo (make-hash-table))

(k-list (make-hash-table)))
(λ (k arg)
(hash-table-put!
k-list arg
(cons k (hash-table-get k-list arg ’())))
(if (eq? (hash-table-get memo arg #f) #f)
(let ((memo-table (make-hash-table)))
(hash-table-put! memo arg memo-table)
(f (λ (result len)

(let* ((old-len
(hash-table-get memo-table

result #f))
(new-len (combine old-len len)))

(if (not (equal? old-len new-len))
(begin
(hash-table-put! memo-table

result new-len)
(for-each
(λ (saved-k) (saved-k result len))
(hash-table-get k-list arg ’()))))))

arg))
(hash-table-for-each (hash-table-get memo arg)

k))))))

Figure 4. A wrapper for tabled functions that return
〈result , length〉 pairs, allowing the length values for a single
result to be combined using a user-defined operator.

ations, while their implementation implements higher-order query
predicates on existing tables. We can simulate that model using a
second table which copies an existing, non-combining table and
applies a combination operator to it; thus, this difference in imple-
mentations does not cause a problem.

6. Comparison with related work
Tabled execution, and constructs similar to it, have appeared a few
times in Scheme. A paper by Johnson (1995) uses tabled execu-
tion, in a similar form to that in this paper, for top-down parsing.
He, however, also defines a general-purpose tabled execution wrap-
per for Scheme functions in CPS form. He also gives a tutorial in-
troduction to tabled execution for use in parsing which starts with
normal and then CPS memoization, and then progresses to tabled
execution. However, his paper does not include operators for com-
bining multiple results from a single call to a tabled function. He
also uses lists and a subsumption check, rather than a hash table, to
store multiple results from one function with one set of arguments.

A number of other control flow techniques used in Scheme
can be confused with tabled execution. A comparison of their
features is given in Table 1. Normal and CPS memoization have
already been explained, as have the forms of tabled execution.
Some systems use normal memoization with an explicit check for
infinite recursion. For example, they may pass a stack of currently
active calls as a parameter to their recursive calls, and check new
arguments against the stack; the function returns a special value
if the current argument is already on the recursion stack. Another
approach to the same problem is to keep a hash table of arguments
that are either in progress or have been done already; graph node
reachability can be solved using this technique. However, it is not as
powerful as tabled execution. For example, tabled execution allows
the following implementation of graph-reachable-vertices
which would produce incorrect behavior using simpler techniques:



Technique Structure req’d Multiple answers Prevents loops Answers can be looped Fixpoint ops
Normal memoization Normal N/A
CPS memoization CPS X
Memoization with recursion checking Normal N/A X
Basic tabled execution CPS X X X
Tabled execution with combine operators CPS Maybe X X
Explicit fixpoint evaluation Usually custom Maybe X X X

Table 1. Techniques for memoization of function results; “multiple answers” refers to passing answers back to the caller through multiple
calls to a continuation, “looping” refers to infinite recursions with the same arguments, and “answers can be looped” refers to returning
answers produced by outer calls as results of inner looped calls (allowing the reachability example in Section 6 to work correctly).

(define graph-reachable-vertices
(cps-table
(λ (k v)
(k v)
(graph-reachable-vertices
(λ (tgt) (for-each k (out-neighbors tgt)))
v))))

This code does a recursion on the vertex v before the call to
out-neighbors rather than after it. A simple check for repeated
vertices would not work for this code, but tabled execution pro-
duces correct behavior. The difference between simple loop check-
ing and tabled execution is that tabled execution does not just ig-
nore infinite recursions, it suspends them and passes answers from
the outer call as results from the inner one. The grammar example
in Section 7 also requires tabled execution: a grammar rule may
have multiple nonterminals on its right-hand side, and any of them
could be recursive. Left-recursive grammars, in particular, require
that automaton states from an inner recursive call be passed back to
the outer call to be processed.

Another alternative to tabled execution is to implement an ex-
plicit fixpoint computation. This approach has the disadvantage that
it is more complicated, but it can express a greater variety of com-
putations. Tabled execution is effectively finding the fixpoint of a
system of set equations, but has limits with more general equations.
An explicit fixpoint solver can do optimizations that are not avail-
able to systems that keep control flow between tabled functions
implicit. However, one issue with explicit fixpoint solving is that it
is not usually just a wrapper around normal functions, although it
can be implemented that way. It does, however, trigger the issues
described in Section 8, making implementation more difficult.

All of the features in this paper are from previous tabled exe-
cution literature using Prolog and other similar logic programming
languages. The uses of tabled execution for analyzing context-free
languages and for graph algorithms are also from that literature.

7. Verifying context-free grammars using
finite-state automata

A larger example that better motivates the use of tabled execution
is the problem of finding the result states of a finite-state automaton
when run on all strings generated by a context-free grammar. That
is, given a context-free grammar G with start nonterminal S and
a nondeterministic finite-state automaton A with start state q, the
goal is to find all states q′ such that there is a string w in the
language of G such that q

w−→ q′. This problem is related to
program verification: G is the grammar of possible execution traces
of a program (allowing context-sensitive handling of procedures),
and A is the automaton of traces that satisfy the desired property;
determining the states of A reached after all runs of the program
and checking those against A’s accepting states determines whether
the program always, sometimes, or never has the property. Such a
model is used in, among others, MOPS (Chen and Wagner 2002)

and FLAVERS (Dwyer et al. 2004). The transition function ∆ of
A is represented as a function, rather than a table, because the set
Q of states of A might be large, or even infinite; of course, the
set of reachable states over a given context-free grammar must be
finite for the algorithm to terminate. Similarly, we do not assume
the ability to enumerate Q as would standardly be done for the
conversion of a push-down automaton to a context-free grammar.

In Scheme, the grammar can be represented by a function (in
CPS) that accepts a nonterminal name and a continuation, and calls
the continuation once for each grammar rule with that nonterminal
as its left-hand side. A symbol in the grammar (either a terminal
or nonterminal) is represented as an element of the set Γ, with
terminals in Σ and nonterminals in Γ − Σ. The argument to the
continuation is a list of terminals (non-symbols) and nonterminals
(symbols) for the rule:

G : ([Γ] → 1)× (Γ− Σ) → 1

The start nonterminal is given separately. Similarly, the automa-
ton can be represented as a function ∆ (again in CPS) that takes a
state from the state set Q and a symbol from the alphabet Σ and
returns (through multiple continuation calls) a set of new states:

∆ : (Q → 1)×Q× Σ −→ 1

Again, the start state is given separately. Now, the goal is to
write a function possible-states that maps a nonterminal or
terminal from the grammar and a state from the automaton into
a set of resulting states from the automaton, as well as the lengths
of the strings producing each output state. As before, the function
will pass multiple values to its continuation:

possible-states : (Q× N → 1)× Γ×Q −→ 1

First, a basic implementation of possible-states is defined
for acyclic grammars is shown in Figure 5. This code fails for most
grammars that contain recursion, however: if grammar-elt and
state are the same in nested calls to possible-states, an infi-
nite loop results. Tabled execution solves this problem. Wrapping
possible-states for tabled execution using the previously de-
fined wrapper (modified for two-argument functions), as shown
in Figure 6, solves this problem by preventing infinite recursions
while preserving correct behavior. Note that possible-states*
cannot recur forever except through possible-states as the lists
of symbols in a grammar rule must be finite; thus, only one function
needs to be wrapped.

The only change is to wrap cps-table-min around the func-
tion. Note that recursions must be to the wrapped function, rather
than the inner body; assuming that possible-states* refers to
the name possible-states rather than its body, that will hap-
pen automatically. This new function also only keeps the length
of the shortest string producing each output state rather than all
of them. Generalizing the code to return the strings themselves re-
quires switching to cps-table-combine, an appropriate reduc-
tion function, and small changes to the rest of the code. This gener-
alization would be able to show the user a short example program
execution that violates the correctness property being checked.



(define possible-states ; Run on one symbol
(λ (k grammar-elt state)
(if (symbol? grammar-elt) ; Nonterminal?
(G (λ (syms)

(possible-states* k syms state))
grammar-elt)

(Delta (λ (state2) (k state2 1))
state grammar-elt))))

(define possible-states* ; Run on list of symbols
(λ (k grammar-elt* state)
(if (null? grammar-elt*)
(k state 0)
(possible-states
(λ (state2 len2)
(possible-states*
(λ (state3 len3) (k state3 (+ len2 len3)))
(cdr grammar-elt*)
state2))

(car grammar-elt*)
state))))

Figure 5. The possible-states function for acyclic grammars,
and the possible-states* function.

(define possible-states ; Run on one symbol
(cps-table-min
(λ (k grammar-elt state)
(if (symbol? grammar-elt) ; Nonterminal?
(G (λ (syms)

(possible-states* k syms state))
grammar-elt)

(Delta (λ (state2) (k state2 1))
state grammar-elt)))))

Figure 6. The possible-states function for arbitrary context-
free grammars.

8. Language design issues
Although the implementation of tabled execution for Scheme
would apply to any functional language with mutable hash tables or
boxes, and less transparently if a monad is required for side effects,
it has some limitations that could be solved by language modifica-
tions. Procedures represented by explicit data structures (closures)
can be compared deeply for equality, while standard Scheme pro-
cedures can only be compared shallowly. This section shows how
that can cause problems for memoization, and therefore tabled ex-
ecution. One practical example of such a problem is the automaton
and grammar handling in Section 7: the states of the automaton A
cannot be represented as functions unless they are not parameter-
ized; it is not possible to have, for example, an automaton whose
states are predicates on alphabet symbols. Such a capability would
make certain automata much more elegant to write.

One major problem with the given implementation, even the ba-
sic memoization wrapper, is that higher-order functional program-
ming is not supported. In particular, currying a tabled procedure
does not work straightforwardly. Assuming a two-argument func-
tion f, it is possible to produce a curried, memoized version of f
as (let ((m (memoize f))) (λ (x) (λ (y) (m x y)))),
but other, normally equivalent forms of currying do not work
when combined with memoization. The “obvious” currying of
(memoize f), (λ (x) (λ (y) ((memoize f) x y))) does

not result in any memoization at all: (memoize f) is re-evaluated
for each set of arguments, and so the same memoized function is
never used twice. It is also not possible to implement the memoiza-
tion as (memoize (λ (x) (λ (y) (f x y)))): even though
that does save the closure (λ (y) (f x y)) for each value of x,
the lack of memoization in the nested closures means that nothing is
actually saved. Using (λ (x) (memoize (λ (y) (f x y))))
fails for a different reason: the call to memoize is repeated for each
call to the function, and so each memoized function is discarded
immediately after use. A correct modification of these two ver-
sions is (memoize (λ (x) (memoize (λ (y) (f x y))))),
in which both levels of memoization are necessary: the first en-
sures that the second memoize call is only run once for each dis-
tinct value of x. The main point of this demonstration is to show
that users must be careful when mixing memoization or tabling
with higher-order functions: it is easy to make mistakes that make
memoization useless, or make tabled operations fail to terminate
because they do not recognize that a particular call forms part of an
infinite loop.

A similar issue arises with memoized higher-order functions,
such as (λ (x ls) (map (λ (y) (< x y)) ls)). This code
does not benefit from a memoized version of map: the closure
argument is never repeated. The (λ (y) (< x y)) closure for
each value of x would need to be created by a memoized procedure
so that exactly the same function is given to map for each value of
x.

The issue that leads to all of these subtleties is the fact that
most versions of Scheme, as well as other functional languages,
do not allow the deep comparison of closures for equality. For
example, if the function (λ (x) (λ () x)) is evaluated at two
different times with the same value of x, the results will be com-
pletely different procedures that do not compare equal to each
other, even using equal?. In general, if f returns a closure that
uses x, (f x) is not equal? to (f x) called at a different time,
even when the same values of f and x are used. Mathematically,
of course, it does not make sense to try to compare functions
too deeply; it is undecidable to determine whether two functions
are extensionally equal. However, a deeper level of comparison
than the default eq? (used by most implementations for equal?
on procedures) could make memoization and tabling more ef-
fective. Some Scheme implementations already provide deeper
comparisons: PLT Scheme version 3 allows a closure comparison
(procedure-closure-contents-eq?, mentioned in its release
notes (Flatt 2006)), and Guile provides a function to determine the
environment of a closure (procedure-environment, documented
in (Guile Developers 2005, §5.8.4) and used for closure comparison
in (Marton 2008)). Implementations of closures in compilers and
interpreters generally use a data structure that allows comparison;
it is just not exposed to users. Explicit conversion of procedures
to data structures by the user allows these transformed closures to
be compared, but this conversion is not compositional (requiring
modifications to all procedures used at a call site) and negates the
benefits of using higher-order procedures in the first place.

9. Conclusion
This Scheme Pearl shows how to apply the tabled execution tech-
nique from logic programming in the context of Scheme. It demon-
strates how tabled execution is a generalization of memoization,
and that continuation-passing style makes tabled execution simple
to implement. It combines the use of higher-order functions with
impure operations on hash tables to achieve this more sophisticated
form of memoization, and relies on CPS and multiple calls to the
same continuation to operate. An example then shows that tabled
execution can elegantly solve a real-world problem.



This work could be extended in several directions. One would
be to create a more elegant wrapper for tabled execution with com-
bine operators. Such a wrapper could be given a combine operation
as input, as in the version in Section 5. Calls to continuations in
that code could be generalized. For example, each continuation k
could be called with all results so far, the combined result so far,
or something completely different (for example, the difference be-
tween the previous combined result and the new one, as is done in
the FLAVERS system (Dwyer et al. 2004)).

A similar approach to our implementation of tabled execution
could also be used to define systems of equations over lattices
and determine their fixpoints, as is required for program analy-
sis. Each variable is represented using its current value, a function
that computes a new value based on the values of other variables
in the system of equations, and a list of its dependencies on other
variables. A worklist algorithm can then be used to iteratively up-
date the variables when their dependencies change until a fixpoint
is reached. An elegant implementation of this algorithm, as op-
posed to a straightforward implementation as used in imperative
languages, remains as future work; tabled execution with combine
operators might provide a basis. We have created a basic version
of fixpoint solving using a simple wrapper function, but the issues
described in Section 8 make it inelegant to use.

It might also be interesting to combine the tabled execution
system with a logic programming engine embedded into Scheme,
such as Kanren (Friedman et al. 2005). This integration would
require the correct handling of partially instantiated values. Tabled
Prolog could then be implemented, allowing a logically complete,
terminating Datalog implementation to be embedded in Scheme.
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